Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 58: e20023, 2022. graf
Article in English | LILACS | ID: biblio-1403706

ABSTRACT

Abstract Caffeic acid is a phenolic compound widely distributed in plants and beverages such as coffee. Although its mechanism of action is poorly understood, caffeic acid reportedly induces antidepressant-like and neuroprotective effects. This study aimed to investigate the involvement of cellular signaling pathways in acute antidepressant-like effect induced by caffeic acid in mice. All procedures were approved by the Institutional Animal Ethics Committee of the UNIVALI n. 021/2013. Female Swiss mice were administered with vehicle, caffeic acid (5 mg/ kg, p.o.), inhibitor (H-89, U0126, chelerythrine, or PD9859, i.c.v.) or caffeic acid plus inhibitor. The behavioral effects were evaluated 1h after the administration of compounds to mice using tail suspension test (TST) and open field test (OFT). The results showed that the antidepressant- like effect of caffeic acid in mice was possibly mediated by the activation of PKA, MEK 1/2, PKC and MAPK (as assessed using TST), without compromising their locomotor activity (as assessed using OFT). Our results demonstrated, at least in part, the pathways involved in the neuroprotective and behavioral effects of caffeic acid.


Subject(s)
Animals , Female , Mice , Caffeic Acids/analysis , Coffee/adverse effects , Neuroprotective Agents/administration & dosage , Antidepressive Agents/adverse effects , Plants , Signal Transduction , Mitogen-Activated Protein Kinase Kinases , Animal Care Committees/classification , Open Field Test
2.
Rev. bras. farmacogn ; 25(6): 668-676, Nov.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769946

ABSTRACT

Abstract This work describes the antimicrobial, antioxidant and anticholinesterase activities in vitro of organic extracts from fourteen seaweeds, eleven sponges, two ascidians, one bryozoan, and one sea anemone species collected along the Brazilian and Spanish coast, as well as the isolation of the diterpene (4R, 9S, 14S)-4α-acetoxy-9β,14α-dihydroxydolast-1(15),7-diene (1) and halogenated sesquiterpene elatol (2). The most promising antimicrobial results for cell wall bacteria were obtained by extracts from seaweeds Laurencia dendroidea and Sargassum vulgare var. nanun (MIC 250 μg/ml), and by the bryozoan Bugula neritina (MIC 62.5 μg/ml), both against Staphylococcus aureus. As for antimollicutes, extracts from seaweeds showed results better than the extracts from invertebrates. Almost all seaweeds assayed (92%) exhibited some antimicrobial activity against mollicutes strains (Mycoplasma hominis,Mycoplasma genitalium,Mycoplasma capricolum and Mycoplasma pneumoniae strain FH). From these seaweeds, A1 (Canistrocarpus cervicornis), A11 (Gracilaria sp.) and A4 (Lobophora variegata) showed the best results for M. pneumoniae strain FH (MIC 250 μg/ml). Furthermore, compounds 1 and 2 were also assayed against mollicutes strains M. hominis,M. genitalium,M. capricolum,M. pneumoniae strain 129 and M. pneumoniae strain FH, which showed MIC > 100 μg/ml. Antioxidant activities of extracts from these marine organisms were inactive, except for E7 (from sponge Ircinia sp.), which exhibited moderated antioxidant activities for two methods assayed (IC50 83.0 ± 0.1 μg/ml, and 52.0 ± 0.8 mg AA/g, respectively). Finally, for the anticholinesterase activity, all the 29 samples evaluated (100%) exhibited some level of activity, with IC50 < 1000 μg/ml. From these, seaweeds extracts were considered more promising than marine invertebrate extracts [A10 (IC50 14.4 ± 0.1 μg/ml), A16 (IC50 16.4 ± 0.4 μg/ml) and A8 (IC50 14.9 ± 0.5 μg/ml)]. The findings of this work are useful for further research aiming at isolation and characterization of active compounds.

SELECTION OF CITATIONS
SEARCH DETAIL